2.3b local stability of first order equations

Monday, January 25, 2021 2:12 AM

Lemma (Translation): Let \overline{x} be an equilibrium of $x_{t+1} = f(x_t)$.

Define a variable $u_t = x_t - \overline{x}$. Then $\overline{u} = 0$ is an equilibrium of $u_{t+1} = g(u_t)$, where $g(u_t) = f(u_t \overline{x}) - f(\overline{x})$. Furthermore, $u_{t+1} = g(u_t)$, where $u_t = f(u_t \overline{x}) - f(\overline{x})$. Furthermore, $u_{t+1} = g(u_t)$, where $u_t = g(u_t)$ or locally asymptotically stable) fixed pt of $u_t = g(u_t)$ iff $u_t = g(u_t)$ if $u_t = g(u_t)$ is an equilibrium of $u_t = g(u_t)$.

Consider: Suppose If" continuous on an open interval $I \ni \overline{x}$. Then by Taylor's thing $f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + \frac{f''(\overline{x})}{2!}(x - \overline{x})^2$ for some $\xi \in I$. If $(x_t - \overline{x})$ is small, can approximate $f(x_t) - \overline{x} \approx f'(\overline{x})(x - \overline{x})$? Linear approximation

 $f(x_t) - \widehat{x} \approx f'(\widehat{x})(x - \widehat{x})$ or $u_{t+1} \approx f'(\widehat{x})u_t$ linear approximation at \widehat{x}

We don't actually generally need f".

Then 2.1 Let f have a continuous first derivative f' on an open interval $I \ni x$, and $x \ni a$ fixed pt of f.

Then $x \ni a$ locally asymptotically stable equilibrium of $x_{t+1} = f(x_t)$ if $|f'(x)| \le 1$ and unstable if |f'(x)| > 1.

proof. Case I: $|f'(\bar{x}) \leq I$. Because f' is continuous on I, can choose $[\bar{x} - \xi, \bar{x} + \xi] \in T$ s.t. $|f'(x)| \leq c \leq I$ for $x \in [\bar{x} - \xi, \bar{x} + \xi]$. By the Mean Value than (MVT) $\forall x_0 \in [\bar{x} - \xi, \bar{x} + \xi]$, |I - rr| |I - I - rr| |I - rr

By the Mean Value Thm (MVI) &x & Lx -E, x +E), $|x-f(x_0)| = |f(x)-f(x_0)| = |f'(\xi_1)| |x-x_0| \le c |x-x_0|$ \times , MVT, %, between \times and \times 0 so %, $\in [\times - \varepsilon, \times + \varepsilon]$ Suppose $|\hat{x} - f(x_{t-1})| \leq c |\hat{x} - x_{t-1}|$ and $x_{t-1} \in [\bar{x} - \xi, \bar{x} + \xi]$. First, $x_t = f(x_{t-1}) \in [x_t - x_t, x_t]$ because $x_t = x_t$ Then $|\bar{x} - f(x_t)| = |f(\bar{x}) - f(x_t)| = |f'(g_{t+1})| |\bar{x} - x_t| \le c |\bar{x} - x_t|$. between I and Xf Then by induction, | = f(xt) | = ct | = -xol =) lim x = x, so x 7 locally asymptotically stable Case 2: | f(=) | 21. Than 3 8 >0 s.l. for x \(\big[\bigz - \xi, \bigz + \xi] \c T , |f(x)| > c > 1.

Then $3 \le 20$ s.l. for $x \in [x-\xi, x+\xi] \subset I$, |f(x)| > c > 1.

By the MVT, $|x-f(x_0)| = |f'(\xi_1)|/|x-y_0| \ge c|x-x_0|$.

But this Itme, if we try be use induction, eventually $ct|_{X,-y_0}| > \varepsilon$. Hence, $\exists t$ s.t. $|_{X} - f^t(x_0)| > \varepsilon$, so \exists is unstable

Note: The 2.1 only applies if If (=) | = 1.

Def. 24 An equilibrium \times of $\times_{t+1} = f(\times_t)$ is hyperbolic if $|f'(\bar{x})| \neq 1$ and nonhyperbolic otherwise,

Aside: We can also generalize notions of stability to periodic solutions of period m by considering the function $f^{m}(x)$ in stead of f(x) in Thm 2.1.

Then 22 Suppose f is continuous on an open interval I and

Then 22 Suppose f' is continuous on an open interval I and the m-cycle $\{\bar{x}_1, f(\bar{x}_1), \dots, f^{m-1}(\bar{x}_n)\} \subset I$.

Then the m-cycle is locally asymptotically stable if for some K $\left| \frac{1}{dx} f^m(x_n) \right| \leq 1$

and unstable if for some k $\left| \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right| > 1$

Aside: By the chain rule

$$\int_{x}^{\infty} f^{m}(\overline{x}_{i}) = \frac{d}{dx} \left[f^{m-1}(f(\overline{x}_{i})) \right] f'(\overline{x}_{i})$$

$$= \frac{d}{dx} \left[f^{m-1}(f(\overline{x}_{i})) \right] f'(\overline{x}_{i})$$

$$= \frac{d}{dx} \left[f^{m-2}(\overline{x}_{i}) \right] f'(\overline{x}_{i}) f'(\overline{x}_{i})$$

$$= f'(\overline{x}_{i}) f'(\overline{x}_{i}) \cdots f'(\overline{x}_{m}) = \frac{d}{dx} f''(\overline{x}_{m}) \text{ for any } k.$$

Corollary 2.1 Suppose $\{Z_1, \ldots, Z_n\}$ is an m-cycle of the difference eq $X_{t+1} = f(x_t)$. Then the m-cycle is asymptotically stable if $\{f'(x_1) - f'(x_m)\} = 1$.

Ex. 2.3
$$x_{t+1} = \frac{a \times_t}{b + x_t} = f(x_t)$$
, a, b>0. $\left(f(x) = \frac{a \times_t}{b + x_t}\right)$
Recall that the equilibria are $x = 0$ and $x = a - b$.

$$f'(x) = \frac{(b+x)a - ax}{(b+x)^2} = \frac{ba}{(b+x)^2}$$

 $f'(0) = \frac{a}{b}$. If $a \ge b$, then 0 is locally asymptotically stable.

If $a \ge b$, then 0 is unstable.

$$f'(a-b)=\frac{b}{a}$$
. If $a < b$, then 0 B unstable

If $a > b$, then 0 is locally asymptotically stabb.

Next fine: What about the nonhyperbolic case? We can't ignor higher-order terms Ex. $\frac{2.4}{100}$ let $x_{t+1} = r - x_t^2 = f(x_t)$, r > 0

Solve for
$$x=r-x^2$$
 to get equilibria.
 $x^2 + x - r = 0$
 $x = \frac{-1 + \sqrt{1 + 4r}}{2}$

$$f(x) = r - x^2$$
, so $f'(x) = -2x$.

Thus, $f(\overline{x}) = | + \sqrt{1+4r} > 1$, so \overline{x} is unstable.

If $\Gamma < \frac{3}{4}$, $f'(\overline{\chi}_{+}) < 1$, so $\overline{\chi}_{+}$ is locally asymptotically stable.

If $r > \frac{3}{4}$, $f(\frac{1}{2}) > 1$, so $\frac{1}{2}$ is unstable.

This equation also has 2-cycles.

$$= \frac{1 \pm \sqrt{4r-3}}{\sqrt{2} + \sqrt{1 - r}}$$

$$= \frac{1 \pm \sqrt{4r-3}}{\sqrt{2}} = \frac{1 \pm$$

Let's assume
$$r > \frac{3}{4}$$
, so \overline{X} , $\overline{X}_2 \in \mathbb{R}$.

Exercise 2.6 Verify that the 2-cycle $\{\overline{X}_1, \overline{X}_2\}$ is locally asymptotically shable if $\frac{3}{4} < r < \frac{5}{4}$ and unstable if $r > \frac{5}{4}$.